Manifolds' Projective Approximation Using The Moving Least-Squares (MMLS)

نویسندگان

  • Barak Sober
  • David Levin
چکیده

In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and non-linear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overcome by learning the lower dimensionality behavior. However, in real life applications, data is often very noisy. In this work, we propose a method to approximate a d-dimensional Cm+1 smooth submanifoldM residing in Rn (d << n) based upon scattered data points (i.e., a data cloud). We assume that the data points are located ”near” the noisy lower dimensional manifold and perform a nonlinear moving least-squares projection on an approximating manifold. Under some mild assumptions, the resulting approximant is shown to be infinitely smooth and of approximation order of O(hm+1). Furthermore, the method presented here assumes no analytic knowledge of the approximated manifold and the approximation algorithm is linear in the large dimension n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of Functions over Manifolds: A Moving Least-Squares Approach

We present an algorithm for approximating a function defined over a d-dimensional manifold utilizing only noisy function values at locations sampled from the manifold with noise. To produce the approximation we do not require any knowledge regarding the manifold other than its dimension d. The approximation scheme is based upon the Manifold Moving Least-Squares (MMLS) presented in [25]. The pro...

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

A New Technique for Image Zooming Based on the Moving Least Squares

In this paper, a new method for gray-scale image and color zooming algorithm based on their local information is offered. In the proposed method, the unknown values of the new pixels on the image are computed by Moving Least Square (MLS) approximation based on both the quadratic spline and Gaussian-type weight functions. The numerical results showed that this method is more preferable to biline...

متن کامل

Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method

Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...

متن کامل

A Tutorial on Multiple Model Least-squares and Augmented Ud Identiication

The augmented UD identi cation (AUDI) is a family of new identi cation algorithms that are based on some well-known matrix decomposition and updating techniques. Compared with conventional least-squares methods, the AUDI methods are conceptually more concise, computationally more e cient, numerically more robust and application-wise more complete. As a result, AUDI is recommended as a complete ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1606.07104  شماره 

صفحات  -

تاریخ انتشار 2016